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Abstract 

Abstract 

The paper proposes mvTANTs ,  three-level networks 
with multiple-valued inputs and binary outputs. These 
networks are a generalization of binary T A N T s  (Three 
level And Not networks with True Inputs). One of pos- 
sible interpretations of m v T A N T  is a four-level binary 
network with input decoders which realize multiple- 
valued literals. Similarly to  mvPLAs, mvTANTs  have 
regular structures with predictable timing. Compar- 
ing to  mvPLAs,  however, they have at least 25 % less 
input wares to the third-level (NAND) plane and not 
more outputs from the second-level (AND) plane than 
the mvPLA. Thus, in many cases they have less gates 
and connections, and are useful to  minimize Boolean 
funclions in cellular FPGAs  and other regular struc- 
tures. 

1 Introduction 

Some Electronically Programmable Logic Devices 
[27] and Cellular Field Programmable Gate Arrays, 
especially those from Motorola, Plessey, or Pilking- 
ton, require new kinds of logic synthesis tools, since 
the classical approaches, as well as the FPGA-specific 
methods developed recently [11,21] are not very suit- 
able for them. 

In cellular FPGA architectures such as Motorola 
[ l o ,  the ”design for speed”, “design for regularity” 

ments are becoming more and more important, while 
the minimization based on the number of gates as the 
sole criterium is becoming of less practical value. It is 
then interesting to investigate various logic structures 
with a limited number of levels that would display high 
degree of the connection regularity and small fan-in to 
the gates. High connection regularity can make the 
timing more predictable and allow to better optimize 
the circuit to improve the speed. The requirement 
that the design method would reduce the fan-in of 
gates is the result of the main technology constraint 
in these new FPGAs - all gates in the circuit have two 

an d the ”design for minimizing connections” require- 
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inputs. Such regular array structures would be easy to 
map to ”cellular” FPGAs, and particularly Motorola’s 
MPAlOXX series. 

One possible approach is to generalize the concept 
of a PLA to a regular structure with planes having 
other gates than only ANDs in the input plane, and 
other than only ORs in the output plane [17,16,15]. 
Additionally, a limited factoring and folding of rows 
and columns in the planes of this new structure de- 
creases the area [22]. Furthermore, instead of having 
variables and their negations at the input to the AND 

ane, one can use two-input, four-output decoders p‘ 24,25,26]. This leads to the usage of multiple-valued 
input algebra as a convenient tool in the synthesis pro- 
cess. 

Most of previous applications of mv logic to binary 
circuit design have been for circuits with two levels 
(not counting the level of decoders that realize the lit- 
erals). In the multi-valued literature, there are just a 
few papers on applying multiple-valued-input algebra 
to circuits with more than two levels. Works describ- 
ing PLA decomposition methods [2,26] and multi-level 
circuits with literal generators realized with Sasao’s 
MACDAS [23] belong to this category. 

In this paper we will investigate a new structure, 
called mvTANT, which generalizes the structure of 
TANT networks [6] and uses the multiple-valued logic 
as a mathematical technique to realize binary multi- 
level logic. The paper is organized as follows. Sec- 
tion 2 presents the structure of binary TANTs and 
gives the rationale for mvTANTs. Section 3 intro- 
duces the literal constraints that lead to the concept 
of the Multiple-Valued-Input TANT Networks (mv- 
TANT). Basic notions and definitions are given in 
Section 4. Section 5 gives theorems used to gener- 
ate implicants for mvTANTs. In Section 6 a method 
to minimize mvTANT networks using mvTANT im- 
plicants is described. Section 7 presents conclusions 
and future work. 

2 Binary TANT Networks 

The ”Three level AND NOT networks with 
True inputs” (so-called T A N T  networks ) were in- 
troduced by McCluskey and Gimpel. They have the 
meaningful advantage over the PLA representation. 
TANT design for function f can never be worse in 
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terms of the number of gates than the correspond- 
ing PLA [SI. The structure of a binary TANT net- 
work is shown in Fig. 2.1. For presentation purposes, 
we assume that  the network is composed of NAND 
gates. TANT has only affirmative variables as its in- 
puts, while the PLA has both affirmative variables 
and their negations as its inputs. Thus, assuming 
rectangular layout realization, PLA has one dimen- 
sion of the input plane two times larger. The number 
of the TANT implicants is also smaller than that of 
the prime implicants in PLA. Therefore, TANT is usu- 
ally better. It allows also for better incorporation of 
the fan-in constraints than the "standard cell" real- 
ization of the PLA-type two-level logic. Several algo- 
rithms to minimize TANT networks have been pub- 
lished, and some of them were realized as computer 
programs [6,5,9,7,8,12,3,4,29,30,13]. 

Another argument for three level logic is given in 
251. I t  was proven by Sasao that for "nearly all" B oolean functions three levels is enough in the sense, 

that while increasing the number of levels from two 
to three the number of gates is substantially reduced. 
By increasing the number of levels from three to more 
than three, the reduction in the number of gates is 
minimal [25]. However, the analysis of solutions ob- 
tained with the Sasao's method leads to the observa- 
tion, that the number of inputs to a gate in a three- 
level network is usually large. There is also a trade-off 
of the number of levels and the total number of inputs 
to gates. From construction, the four-level binary net- 
works are not worse than the networks with a smaller 
number of levels, and additionally they have usually 
a much decreased number of gate inputs. There- 
fore, we increase here the number of levels to four, 
hoping that the the decreased fan-in and number of 
gates will outweight the difficulty of the synthesis al- 
gorithm. Another rationale for the four-level binary- 
realized mvTANTs is the following. Since it was ex- 
perimentally proven that both the mvPLA and the bi- 
nary TANT networks improve on the binary PLA, the 
multiple-valued TANT should improve on both the bi- 
nary TANT and the multiple-valued PLA. In the worst 
case, the binary TANT reduces to a binary PLA. The 
same property holds for mv logic: in the worst case, 
the mvTANT network reduces to the mvPLA. There 
is then no risk involed in using mvTANTs. By pay- 
ing a price of more complex synthesis, one gets always 
a solution that is not worse than the popularly used 
mvPLA with input decoders. 

In addition, the mv TANT concept can be applied 
to minimize four-level networks with pvalued inputs 
and binary outputs for any value of p. 

3 The Basics of the mvTANT 

We will denote binary variables by small letters and 
multiple-valued (mv) variables by capital letters. The 
multiple-valued input literal ( mv literal, for short ) is 
defined in a standard way [MI. 

Let us observe, that in the case of the binary TANT 
network, the main design constraint is, that out of two 
polarities, 0 and 1, of a 2-valued variable, the circuit 
accesses only one polarity. Below we will generalize 

this constraint to a pvalued logic. 
Definition 3.1. The allowed set of literals for 

variable X is a set of literals such that every single- 
value literal X i  of this variable can be expressed in 
a unique way as a product of some of these literals 
and their negations. 

The set of all values of variable X is denoted by P. 
A single value is denoted by i, i = 0, ..., p - 1. There 
exist p literals such that each of these literals has a set 
of values P - {i}, i = 0 ,..., p - 1. Let us denote by 
P P  the set of these p literals. 

Theorem 3.1. Any set PS of p- 1 literals selected 
out of set P P  creates for variable X an allowed set of 
literals. 

Ezample 9.1. Let P = {0,1,2,3,4}. p = 5. 
pp = {x{O,1,2,3), x{O,1,2,4) x{O,1,3,4) x{OJA4) 

xt1,2,3,41}. p s  = {xtOV1,2,3i, xtOJ,2,41: ~ { 0 , 1 , 3 , 4 1 :  

X{0*2*394)}. Let the literal from P P  not selected to 
PS be X{1*213*4). Value 0 = (0,1,2,3) n (0,1,2,4) n . . . . -  . 
{0,1,3,4} n {0,2,3,4}. For values 1, 2, 3, 4, X{') =F, 
where Xi is in PS. For instance X{') = X{03213*4) 

= X{O~l~~,3~4)-{0~2~3~4}. From now, we will denote sets 
in a simplified way: set {0,1,2,3} will be denoted as 
0123. 

For any multi-valued variable, there are several pos- 
sible sets that are allowed for it. One of them is se- 
lected by the designer, and we are not interested here 
how this set is selected. After the selection, each of the 
elements of this set is called the selected literal. The 
set of the selected literals is realized as the output 
functions of a "unique decoder". The name "unique 
decoder'' comes from the property that a decoder with 
a larger number of outputs either would not create the 
allowed sets of literals (the single-values could be cre- 
ated in a not unique way), or would have more than 
the minimumnumber of outputs. Also, a decoder with 
a smaller number of outputs than the unique decoder 
cannot be used, since it would not be able to allow 
realization of an arbitrary Boolean function. 

Below, we will use 2-valued, 3-valued and 4-valued 
logics as illustrations of our general approach to p- 
valued-input TANT. For 2-valued variable there are 
two allowed sets of literals {Xo} and {X'}, and one is 
selected as the selected literal. For 3-valued variable 
there are three possible literals Xol,  Xo2 and X12, 
and any two of them are selected as the selected liter- 
als. For every 4-valued variable X ;  the allowed set of 
literals is: $XiJ, X i K ,  X;"), where J ,  K,  L are various 
subsets o f t  e set { 012, 013, 023, 123 }. 

The set of values of the selected literal is called 
the set of selected values. Every given set of selected 
values for a variable will be called a polarity of this 
variable. I t  results from the above definitions and The- 
orem 2.1 that for every variable and associated polar- 
ity there exists a set of selected literals and a unique 
decoder of this variable. 

From the point of view of using the mvTANT con- 
cept to design binary circuits, the 2k-valued input logic 
must be used. In the case of Sk-valued logic, the mv- 
TANT network has k-input, 2k - 1-output decoders in 
the fourth level (the input level). (It has NAND gates 
in the remaining three levels, see Fig. 3.1.) From the 
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practical point of view, k = 2,3, since larger values of 
k would lead to  too many outputs from the k-to-ak - 1 
decoders. 

Since in a binary TANT only signals correspond- 
in6 to affirmative variables are on the inputs to the 
third level plane, in comparison with a PLA which has 
both affirmative and negated variables, one dimension 
of this plane is reduced in binary TANT by 50 %. 
In case of mvPLAs k=2 leads to 2-input, 4-output 
decoders, but for mvTANT only 3-output unique de- 
coders are used. This makes a gain of 25 % in the third 
level plane, when compared to an mvPLA, or a stan- 
dard PLA which uses 4 outputs for two variables (two 
variables, plus their two negations). The decrease of 
the total area of mvTANT with respect to mvPLA is, 
however, even more substantially caused by the large 
decrease in the number of gates of the second level 
mvTANT plane. In case when variables are grouped 
to triplets and an 8-valued logic is used to describe the 
outputs of the 3-input 8-output decoders, the number 
of decoder outputs which has to be used on the input 
to the third level plane of the mvTANT is seven. This 
is one wire more than in the case of three variables 
with their negations in a binary PLA, but the reduc- 
tion in the number of gates on the second level usually 
much outweights this increase. 

We distinguish three types of binary variables: sin- 
gle variables, paired variables, and tripled variables. 
The paired variables are binary variables allocated to 
groups of two variables. The tripled variables are vari- 
ables allocated to groups of three variables. In the 
first synthesis stage, not presented here, an allocation 
program analyzes the partial symmetries of all pairs 
of binary variables, and on this base allocates every 
binary variable to only one group: with one, two or 
three variables. This algorithm selects also the polar- 
ity of each multiple-valued variable that corresponds 
to this group of binary variables. 

The problem of pairing binary variables to 2k - 1- 
valued variables, as well as the related problem of se- 
lecting the polarities of 2k - 1-valued variables, are 
quite difficult. Even more challenging is the prob- 
lem of grouping binary variables to any number of 
groups of 1 ,2 ,3 ,4 ,  ..., k (k 5 n) variables. This can 
be still generalized to  the case that the same variable is 
used as an input to several neighboring decoders. This 
means, allocating the same variable to more than one 
group. The Binary Decision Diagrams BDDs) and 
Orthogonal Decision Diagrams (ODDS) 151, as well 

in them, are crucial to finding those variables’ group- 
ings and polarities. 

A general structure of mvTANT with single, paired, 
and tripled variables in the decoder level is shown in 
Fig. 3.1. The unique decoder for a single binary vari- 
able corresponds to using this variable on the input 
in a positive polarity (as a wire), or in a negative po- 
larity (with an inverter). Other unique decoders were 
explained above. Our approach (both the binary and 
the multi-valued variant) allow also for direct connec- 
tions between any two levels of a mvTANT, while the 
approaches from 25 and 6 restrict the connectivity 

floorplans for FPGA/PGA/VLSI realization of binary 

as total and partial symmetries of variab \ es observed 

only to the neigh L 1  oring leve I 1  s.  One of possible layout 

circuit corresponding to a mvTANT is shown in Fig. 
3.2. The functions realized in this network are: 

y1 = (a e b ) ( c + Z ) e  f + (a+6)  c d f, 

y3 = (a e b)(c + 2 ) e  (a + 6 )  c d f 6 e 7 (a+b) + 
( a e b ) ( c + a ) e  f + @ + 6 ) c d f ( c + a ) ,  
y4 = (a+6) c d f  + B e  3;. 
The outputs of the third level are: = 

(a e> b ) ( c + z ) e  , fi = (a + 6 )  c d f, E = 
% e f .  The outDuts of the second level are: Z i  = 

yz = (a+5) c d f  (c+;i) + E, 

- ,  
( a e b ) ( c + ; i ) e  3 ; , ~ =  ( ~ + 6 ) c d f  (.+a),,= 
rl r2 r3 (a + b) .  If necesary, the outputs of all 4 levels 
can be-used & primary outputs. 

presents a layout of a mvTANT 
with truly multiple-valued inputs, in this case, 3- 
valued. The function realized in this layout is F = 

+ CO1 CO2 BO2 DO1 DO2 BO1 and its optimization 

Figure 3.3. 

A01 DO1 DO2 Bo1 

will be discussed in more detail in Example 4.1. 

4 Fundamental Definitions 

Example 4 .1 .  The 3-valued-input function pre- 
sented in the Marquand map from Fig. 4.1 can be 
minimized as the following mvTANT expression: 

F = A01 C12 + CO Bo2 DO BO1 
- - A01 DO1 DO2 BO1 
+ CO1 CO2 Bo2 DO1 DO2 BO1 

It  is assumed that the selected literals are: 
Aol, Ao2, BO1, BO2, CO1, CO2, DO1, and Doz.  
The mvTANT-implicants from above expressions are 
shown in Fig. 4.2. The corresponding network is 
shown in Fig. 4.3. I t  has 6 gates and 17 connections 
decoders not counted). We will say that the cost is I 6, 17). The gate cost is 6 and the connection cost 

is 17. We can minimize the total cost that can be 
any weighted sum of these two costs, but some mini- 
mization properties hold only for some weight combi- 
nations. 

By applying the de Morgan’s theorem to the first 
and second levels in Fig. 4.3, one can observe that 
the first level plane of NANDs in the mvTANT re- 
alizes a logical sum (the OR plane), the second level 
of NANDs realizes a product (the AND plane), and 
the third level of NANDs realizes the negation of the 
product of selected literals (the NAND plane). The 
expressions written in Fig. 4.3 near the second level 
NANDs correspond then to the output of the AND 
plane (negations of NAND gates). 

TANT network minimization problem consists in 
finding the Boolean expression that minimizes the to- 
tal cost. It means that the synthesis method should 
minimize simultaneously the second and the third lev- 
els. (It is assumed that the decoders have been already 
selected earlier, and are not included to the total net- 
work cost..) 

Definition 4.1. The available literal AVL(X), 
for variable X, is a selected literal of this variable, or 
a product of any number of selected literals of this 
variable. 
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Definition 4.2. The available product 
AVP(PL), of a product P L  of literals, is a prod- 
uct of available literals for the variables from product 
PL,  such that A V P ( P L )  includes P L .  

Example 4.2.  Assuming that the selected 
polarities of 4-valued variables X and Y are 
{012,013,123}, and the selected polarity of vari- 
able 2 is {023,013,123}, the selected literals are: 

The ka i l ib le  litirals for viriable X are: AGL(X) 

available literals for variable Y are: AVL(Y) 

able literals for variable 2 are: AVL(Z) = 
{Z023 1 ,  Z o l 3  Z123 ) > > ,  Z23 Z13 Zo3 Z 3 } .  The available 
products of product P L  = X o  Y' Z 1  are those el- 
ements of the Cartesian Product: AVL(X) x AVL(Y) 
x AVL(Z) that cover the product P L .  For instance, 
X 0 l 2  Yol3 Z013 is one of the available products of PL: 

X o  Y' 2' = P L .  Available products are mv cubes 
[18,28], and the cube inclusion operation is defined in 
a standard way. 

Let us observe, that the set of these available prod- 
ucts is very large, when compared to a number of prod- 
ucts of affirmative variables in a binary TANT, or to 
a number of literals in mvPLA. The solution space 
searched here includes the previous spaces and is sig- 
nificantly larger, which is the reason why an mvTANT 
gives usually much better solutions than both a binary 
TANT and a standard mvPLA with the same literals 
selected. 

Definition 4.3. A permissible expression is a 
Boolean expression of the form P = H TI TZ ... T, 
where both H and are products of selected literals. 
H is called the head of permissible expression and 
each is called a tail 
factor. A permissible implicant of a function 
f (plvTANT-implicant ) is a permissible expression 
which implies function f .  

Example 4.3. The Boolean expression Aol C' D12 
is a prime implicant of the function from Ex- 
ample 4.1, and A'' - - -, 
CO BO2 DO, CO BO2 are some of the 
mvTANT-implicants of this function. 

Definition 4.4. The heads of mvTANT-implicants 
of function f are called the second level groups. 
The set of all second level groups is denoted by Hf. 
The tail products of mvTANT-implicants are called 
the third level groups. The set of all third level 
groups is denoted by Tf . 

For the mvTANT network of the 
function from Example 4.1, realized in Fig. 4.3, the 
products (cubes) A'' and CO' CO2 BO2 are the second 
level groups. The products, CO2 DO2 and Do' DO2 Bo' 
( = Do BO'), are the third level groups. 

Similar to two-level minimization, in which a solu- 
tion is a covering with prime implicants, the solution 
of mvTANT is a covering with mvTANT-implicants. 
In mvTANT case, however, the situation is more com- 
plicated, since several mvTANT-implicants cover the 

xOl2 x013 x123 y o 1 2  y o 1 3  y 1 2 3  2 0 2 3  2013 2 1 2 3 .  , ,  
- { Xo12 X013 X123 Xo1 ~ 1 3  X12 X I } .  The , , , , , ,  - 

- { y o 1 2  yo13 y 1 2 3  yo1 y13 y l 2  y'} .  The avail- 9 > > 1 9  
- 

AVP(PL)  = A V P ( X O  Y I  21) = x012 y o 1 3  2 0 1 3  3 - 

-- - 

is called a tail product while 

,401 m, ,401 m, 

Example 4.4. 

same set of minterms, but have different tail factors. 
The selection of mvTANT-implicants must be then 
done in such a way that the third level groups are max- 
imally shared among the mvTANT-implicants, and 
are also of the smallest cost. 

Let us observe in Example 4.4. that there are two 
representations for the last group that  we will use 
interchangeably. The rule AS . A' = AS ' is 
used to change from one form to  the other. In gen- 
eral, the process called normalization is used to cre- 
ate a standard form of implicants, called the principal 
mvTA NT-impli cants. 

Property 4.1. The following rules of Boolean 
transformatjons are true: 

(4.1) A' B' Ak = 

where V A L  is the set of all values of variables A,  
B .  SUBSET(S) is any subset of set S, and r ,  k, 1 are 
non-empty subsets of V A L .  

A' Bl A{rnk} U S U E S E T t V A L  - (r - l ) }  

(4.2) A' B' A' 
(4.3) A' B' A' + A' B' 
Definition 4.5. Normalization of an 

mvTANT-implicant is the process of applying rules 
(4.2) and (4.3 to this implicant until all literals will 

Example 4.5. For the 4-valued-input func- 
tion from Fig. 4.4 assume the following se- 
lected literals: X o Z 3 ,  X o l 3 ,  X l Z 3 ,  YOz3, Yol3 , 
YlZ3.  Then some of the available products are: 
y 2 3  = y o 2 3  . y 1 2 3  y13 = y o 1 3  . y 1 2 3  

y o 3  = y o 1 3  . y o 2 3  y3 = y o 2 3  . y o 1 3  . y 1 2 3  

a + A' B' As ,when r # s 

become the se 1 ected literals. 

7 1 

X 3  = XoZ3 X o l 3  . X l Z 3 .  Applying rule 
(4.1) we get: Y Z 3  X 3  Yol3 = Y Z 3  X 3  YO3 = 
y 2 3 ,  - - y 2 3  

Applying normalization to any of the above, we get: 

Definition 4.6. The permissible realization 
for the function f is a logic sum of the set of mvTANT- 
implicants which cover all minterms of the function. 
The optimal permissible realization for function 
f, denoted by O P R ( f ) ,  is such a permissible real- 
ization that its corresponding TANT network has the 
minimum total cost. 

Definition 4.7. The prime permissible impli- 
cant, ppf-implicant for short, is such a permissible 
implicant that it is not properly included by prime im- 
plicants and if any tail factor is removed from it,  the 
resulting expression will not be an mvTANT-implicant 
any more. The set of all ppj-implicants is denoted by 
P P  . 

hxample 4.6. For function f from Example 4.1 
some of the ppf-implicants are: 

y o 2 3  y 1 2 3  X023 X013 X123 y 0 1 3 .  

A01 C12 

A01 C12 C2 A01 DO2 DO BO1 Cl2. 
m, CO Bo2 Do, 

For instance, by removing Do Bo' from 
CO BO2 Do BO1 one creates CO BO2 which is not an 
mvTANT-implicant . 

Definition 4.8. The principal mvTANT- 
implicant, pcf-implicant for short, is such a normal- 
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ized ppj-implicant that  its tail products don't contain 
the literals from its head. The set of all pcj-implicants 
is denoted by PC, . 

Ezample 4.7. Assuming selected literals: Aol, A o 2 ,  
Bo' 9 ,  BO2 CO1, CO2, DO1, and DO2, the mvTANT- 
imdicant: Aol C12 C2 A01 DO2 DO BO1 Cl2 

is transformed to: 

next to: Aol Cla CO2 DO2 Dol DO2 BO1 
and next to: Ao' DO1 DO2 BO1 
which is the normalized form of the pct-implicant 

A01 C'2 Cl2 CO2 A01 DO2 Do1 DO2 BO1 Cl2 

- I  - 
for these selected literals. 

Assuming now another selected literals: Aol,  A12, 
Bo' 1 1 1 1  B12 Col CO2 Dol, and DO2, the mvTANT- 
implicant: A'' C12 C2 Aol DO2 DO BO1 Cl2 

- -  

which is the normalized form of t h e  pcj-implicant 

Example 4.8. Another normalization, assuming se- 
for these selected literals. 

lected literals Bo'. BO2. CO1. and CO2. is: 

All mvTANT-implicants, that produce the same 
principal mvTANT-implicant after normalization, 
have the same "shape" on the Marquand chart - they 
cover exactly the same true minterms and don't care 
minterms. 

5 Generating Necessary mvTANT Im- 
plicants 

In this section we will give definitions and theorems 
which are next used to generate efficiently only those 
mvTANT implicants, called the necessary mvTANT- 
implicants, that can be included in a minimal solution. 

Definition 5.1. The maximal pcj-implicant, 
mpj-implicant for short, is such an pcj-implicant 
which is not included in other pc -implicants. The 
set of all mpj-implicants is denoted by Mj . 

Every tail product of an m p j -  
implicant is included (cube inclusion) in some tail 
product of all pcj-implicants which are covered by this 

Theorem 5.1. 

mp -implicant (set inclusion for minterms). 
hzample 5.1. For function from Example 4.1: 

is the maximal imdicant. but CO' CO2 BO2 go1 
A01 C12 DO1 DO2 BO1 

is not, since it is incfuded in the principal implicant 
Col CO2 BO2 Dol DO2 BO1. The tail products of 
the mpj-implicant Aol C12 CO2 DO2 DO1 DO2 BO1 
are CO2 DO2 and Do' DO2 Bo'. They are included 
in the tail products of all pcj-implicants created from 
Ao' C12 CO2 DO2 DO1 DO2 Bo' by removing any com- 
binations of literals from the tail factors. 

In two-level minimization, one does not use in the 
covering stage those products implicants that are in- 
cluded in prime implicants. Similarly, the analysis of 
various kinds of mvTANT-implicants allow's to detect 
those mvTANT-implicants that will not occur in at  

least one exact minimum solution, and can be, there- 
fore, excluded from further considerations. 

Some other category of useful mvTANT-implicants 
are called mazimal. They cover locally the maximum 
number of minterms and are thus useful in greedy 
heuristic algorithms. They are also used to create p p j -  
implicants included in them. This is done by removing 
any literals from tail factors. 

Definition 5.2. The augmen ted  ppj-implicant, 
ap j  for short, is such a pp implicant that it is not a 
pcj-implicant. The set of ah-apj -implicants is denoted 
by A Pj . 

Example 5.2. For function from Example 4.1 
Aol C12 C2 A01 Do2 Do Bo1 C12 is an example of 
an augmented ppj-implicant. 

Definition 5.3. The necessary apj-implicant , 
nul-implicant for short, is such an ap implicant that 
all of its tail factors can be sharedby other p p j -  
implicants of a different head. The set of all naj-  
implicants is denoted by N A  . The unnecessary 
apt-implicant is the up impicant which is not an 
naf-implicant and is calieh an unaj-implicant. 

Example 5.3. For a binary case, f = a T + b E. 
TANT-implicant a 3 is necessary since its tail factor 
a b  can be used in another TANT-implicant, bii, cre- 
ating a TANT-implicant b 3 and thus leading to the 
minimal TANT solution f = a a + 6 2. sowever,  
in f 2  = a& + b? the TANT-implicant a ab is no t  
necessary since its tail factor ;Ei; is useless in all other 
TANT-implicants of f2 (in this case, in b Z). 

T h e o r e m  5.2. If an unaj-implicant is excluded 
from being selected to OPR sets, then at  least one 
exact optimum solution is retained as an OPR. 

This can be compared to dominated primes in 
Quine table for PLA minimization. If one removes 
all primes dominated by other primes, some exact so- 
lutions may be not generated, but at  least one exact 
solution will be retained. 

Definition 5.4. The necessary ppj-implicant, 
npj-implicant for short, is such a ppj-implicant that is 
not an una,-implicant. The set of all npj-implicants 
is denoted by N j .  

From Definitions 4.6,4.7,4.8, 5.2,5.3, and 5.4. one 
can conclude that N j  = PCj U N A j  

The next theorem results directly from these prop- 
erties and the definitions of pcj-implicants and naj-  
implicants. 

Theorem 5.3. Every apj-implicant can be gener- 
ated by addition of any number of literals included in 
its head to any subset of its tail products. 

Theorem 5.4. The available products of all the 
prime implicants of function f (array ON) are suffi- 
cient as the heads of ppj-implicants. 

Example 5.4. The prime implicants for the func- 
tion from Example 4.5 are: X o l  Y 2 3 ,  X o 2  Y23,  
X12 Y23,  Y 2 .  The available products of these impli- 
cants are Xol3 Y 2 3 ,  X023 Y23 ,  X123 Y 2 3 ,  Y 2 3 ,  which 
are the heads of ppj-implicants X0I3 Y23 X3 YO13, 
~ 0 2 3  y 2 3 n  x123 ~ 2 3 x 3 ,  y 2 3  x3 y 0 1 3 ,  

respectively. 
Theorem 5.5. The available products of all prime 

implicants of the function f' (complement of f) are 

- 
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sufficient as the tail products of mpj-implicants of f. 
Ezample 5.5. The prime implicants for the 

negation of the function in Example 4.5 are YO1, 
X3 Y013. The available product of implicant X3 Y013 
is X3 Yol3 which is the tail product of the mpj- 
implicant YZ3 X 3  Yol3 from Example 5.4. 

6 Algorithm to minimize mvTANTs 

Similar to PLA and TANT minimization, the al- 
gorithm to minimize mvTANTs has two stages. In 
the first stage all the principal mvTANT-implicants 
are generated from the set M S I  of the mini- 
mally split implicants (MSI-tmplicants) [l]. Next, 
the tail factors that are useful to create necessary 
mvTANT-implicants are generated, as well as neces- 
sary mvTANT-implicants. This determines the search 
space for the m v T A N T  covering problem.” The 
mvTANT covering problem is in essence a cover- 
ing/closure or binate covering problem, which is solved 
in the second stage using a decision function D F ,  sim- 
ilar to the Petrick 01 Helliwell [14] decision functions. 

The first stage is executed in the following way. 
Given is a Boolean function as sets O N  and D C .  
1 )  enerated is set M S I  of minimally split impli- 

cants !I]. 
2) set of prime implicants of function f‘, a comple- 

ment to f, is found. This set is denoted by P F N O T .  
3) set M j  of mpf-implicants is generated using sets 

MSI and P F N O T  (Theorem 5.5 is used). The heads 
of mpj-implicants are available products of implicants 
from MSI. For each maximal implicant, it is noted, 
what MSI-implicant it was generated from. Each tail 
product of this mpj-implicant obtains a unique name. 

4) set PCj of pcj-implicants is created from set Mj 
by removing all possible subsets of literals. Every gen- 
erated tail factor obtains a unique name. It is noted, 
in which pcj-implicants it can be used, and which tail 
factor from an mpj-implicant would be created from 
it by normalization. 

5) set Nj of naj-implicants is generated. All new 
tail factors generated obtain unique names. It is 
noted, in which pcj-implicants they can be used, and 
to which tail factors from pcj-implicants they corre- 
spond. 

In the second stage for every minimally split 
implicant MSIi an elementary decision function 
DF(MS1j)is created. This function describes all p o s  
sible conditions of covering this MSIi with principal 
and necessary mvTANT-implicants. The global exact 
minimization problem is stated as a problem of find- 
ing the minimum satisfying set of literals to a Boolean 
product D F ,  the product of all the decision functions 
for all the minimally split implicants: 

for all MSIj from MSI. DF = (JDF(MSIi), 
This pro em is NP-hard. 
The same sub-functions that exist in various deci- 

sion functions DF(MSIi )  are encoded with the same 
Boolean variables in function D F .  

The D F ( M S I ; )  function for a M S I j  implicant is 
created as follows: 

(U pcj) fl (pcj * ntjr> . n (tj, * tjr,) 

where: * is an implication relation. 
pcj are the decision variables for all pcj-implicants 

that cover MSIi.  Below, we will refer to an mvTANT- 
implicant pc. and not to  a variable pc. corresponding 
to an mvTAkT-implicant,  for short. de will keep this 
notation for all decision variables below. 

t j ,  are the decision variables for all tail factors tir 
from pcj . 

t j , ,  are the decision variables for all tail factors of 
naj-implicants created for tail factor tir from pcj. 

Example of such a decision function: DF(MSIi )  = 
PCl + pcz + PC3) 
PCl* ( t  1 , .t 1 , )) (PC2 * (t  z , 4,)) (PC3 *t3,) 

( t a l  * ta l , ) )  ( t 2 ,  * ( ta , ,  + t a , , ) )  . 

. 
. I ~ l l * ( ~ 1 l l + ~ h ,  1) (tl,*(t2l1 +t21,+t213 1) * 

* ( t311 + t312 1) 
The first component is a sum of variables for three 

pcj-implicants: pc1, pcz, and pc3, created from MSIj .  
The second component is a product of three implica- 
tion equations for tail factors from the three principal 
mvTANT-implicants. The implication (pc la ( t1  , . t l a ) )  
means: if you select pcj-implicant pcl then you have 
to select tail factor til, or tail factor .t1,. The third 
component is an implication equation for the tail fac- 
tors from the first pcj-implicant pcl. For t l  it in- 
cludes variables tl and tl,,, which correspond to all 

l? tail factors in naj-implicants generated from tail fac- 
tor t ~ ,  of pcj-implicant pcl. The implication means: 
if you selected (in pcl), the tail factor t l , ,  then you 
have to select one of tail factors: tl, ,  or tl12, in naj- 
implicants created from p c l .  The fourth component is 
an implication equation for the tail factors from the 
second pcj-implicant. The fifth component is an im- 
plication equation for the tail factors from the third 
pcj-implicant . 

The decision function DF is created as a Boolean 
product of all such elementary decision functions. It 
is next normalized to a standard form of a product of 
sums of products of literals, by using the implication 
removal transformation: a + b is reduced to E+ b. 
There are several methods in the literature (both exact 
and approximate) to minimize such decision functions 
D F ;  binate covering, Boolean Equations, Binary De- 
cision Diagrams, integer programming, data flow, cube 
calculus, AND-OR tree search, tree search, and many 
other [29,30,14,12,8,7,6]. 

7 Conclusions and future work 

We presented a new kind of circuit: Multiple- 
Valued-Input TANT Network, mvTANT for short. 
Similarly to Multiple-valued Input SOPs (mv- 
SOPS) and Multiple-Valued-Input Exclusive Sums-of- 
Products (mvESOPs), such circuits may find appli- 
cations to the minimization of binary regular arrays, 
cellular FPGAs, and gate arrays. We presented also 
the fundamentals of the minimization of such circuits. 

In a forthcoming paper, this approach will be ex- 
tended to exact and approximate minimization of 
multiple-output incompletely specified functions. It 
has been also generalized for the case of circuits with 
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full decoders and function generators: in full decoders 
we use 2k decoder outputs for k decoder input vari- 
ables; in function generators there are more than 2k 
decoder output functions used. Such decoder func- 
tions are used to  create literals for some, or all, mv 
variables. The problems of finding variables’ group- 
ings and polarities will be also a subject of the forth- 
coming paper. 

Since the solution space of the mvTANT minimiza- 
tion problem is very large, larger than the space of the 
classical mvSOP minimization problem [18,20] only 
an approximate variant is reasonable from the prac- 
tical point of view. But, similarly to Espresso-Exact 
[18,19,20] and the approach from [14], the creation of 
exact algorithms may be of some use to understand 
better the problem, and can also help in the creation of 
an efficient approximate algorithm for the same prob- 
lem. 
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